This course explores the intersection of artificial intelligence (AI), machine learning (ML), and responsible business practice in our increasingly AI-driven economy. Participants establish foundational understanding of AI and ML concepts, their real-world applications, and factors driving their widespread adoption across industries. The course presents the machine learning process—from data collection and preparation through model development and evaluation—providing practical insights into how data transforms into actionable business insights.

Frühbucherrabatt! Schalten Sie 10.000+ Kurse von Google, Microsoft und mehr für £160/Jahr frei. Jetzt sparen.


Was Sie lernen werden
Distinguish between artificial intelligence and machine learning, their real-world applications, and the factors driving their widespread adoption.
Gain insight on the four phases of the machine learning process to collaborate and make informed decisions about AI initiatives.
Recognize different types of algorithmic bias in AI systems and their real-world consequences across various sectors.
Examine mitigation strategies for algorithmic bias and compare governance models from industry self-regulation to governmental regulatory frameworks.
Kompetenzen, die Sie erwerben
- Kategorie: Algorithms
- Kategorie: Data Ethics
- Kategorie: Data Governance
- Kategorie: Applied Machine Learning
- Kategorie: Data Processing
- Kategorie: Data Collection
- Kategorie: Governance
- Kategorie: Diversity and Inclusion
- Kategorie: Risk Mitigation
- Kategorie: Machine Learning
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Business Ethics
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juni 2025
23 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This introductory module demystifies artificial intelligence and machine learning by exploring their fundamental concepts, the differences between them, and their real-world applications that impact our daily lives. Through clear explanations and concrete examples, you'll gain essential knowledge about how these technologies function across various contexts, building a foundation for understanding their strategic importance and preparing you for deeper exploration of their mechanisms and ethical implications in later modules.
Das ist alles enthalten
1 Video13 Lektüren5 Aufgaben1 Diskussionsthema2 Plug-ins
This module provides an overview of the machine learning process, exploring the four essential phases: data collection, data preparation, model development, and model evaluation. Through understanding these foundational phases, learners will gain practical knowledge that enables effective collaboration with technical teams, better evaluation of AI initiatives, and identification of machine learning opportunities within their organizations.
Das ist alles enthalten
1 Video17 Lektüren6 Aufgaben1 Plug-in
This module examines how algorithmic bias emerges in AI systems, revealing why even sophisticated machine learning algorithms can produce unfair or inaccurate results. Students explore three critical types of bias—historical, representation, and measurement—through real-world examples spanning healthcare, hiring, and financial services. By understanding how biases infiltrate AI systems and learning to identify their warning signs, students develop the analytical skills needed to assess algorithmic fairness and evaluate potential solutions in business contexts.
Das ist alles enthalten
2 Videos16 Lektüren7 Aufgaben1 Plug-in
This module equips students with practical tools to address algorithmic bias in business applications. Through examination of bias mitigation techniques—from synthetic data generation to algorithmic modifications that ensure equal performance across demographic groups—students learn how to build more inclusive AI systems. The module also explores governance frameworks, comparing industry self-regulation with government oversight approaches such as the EU AI Act, preparing future leaders to navigate the evolving landscape of responsible AI deployment while maintaining competitive advantage.
Das ist alles enthalten
3 Videos18 Lektüren5 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,