Macquarie University
AI Security: Risks, Defences and Safety

Bringen Sie Ihre Karriere in diesem Sommer in Schwung mit Kursen von Google, IBM und anderen für £190/Jahr. Jetzt sparen.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Macquarie University

AI Security: Risks, Defences and Safety

Matt Bushby

Dozent: Matt Bushby

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

Es dauert 11 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

Es dauert 11 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Understand and Identify Unique AI Threats.

  • Apply AI-Specific Security Controls and Testing.

  • Align AI Systems with Responsible AI Principles and Compliance.

Kompetenzen, die Sie erwerben

  • Kategorie: Threat Modeling
  • Kategorie: Applied Machine Learning
  • Kategorie: Cyber Security Assessment
  • Kategorie: Cybersecurity
  • Kategorie: Risk Management
  • Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
  • Kategorie: Artificial Intelligence
  • Kategorie: Governance
  • Kategorie: Cyber Attacks
  • Kategorie: Machine Learning
  • Kategorie: Application Programming Interface (API)
  • Kategorie: Regulation and Legal Compliance
  • Kategorie: Data Security
  • Kategorie: DevSecOps
  • Kategorie: Cyber Threat Intelligence
  • Kategorie: Information Systems Security
  • Kategorie: Security Testing
  • Kategorie: Cyber Governance
  • Kategorie: Security Engineering
  • Kategorie: Encryption

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Juli 2025

Bewertungen

6 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 6 Module

Artificial Intelligence (AI) is revolutionising industries across the globe, but it’s also introducing a rapidly evolving set of cybersecurity threats. As AI systems become more complex and deeply embedded in everyday operations, understanding their foundational principles and emergent risks is essential. In this topic, you’ll explore the fundamentals of AI, what it is, how it works, and how it’s being applied across sectors. You’ll learn the difference between engineering-driven AI systems and deep learning models, and how each introduces unique security considerations. From there, we shift focus to the new and emerging threat landscape: adversarial AI, model manipulation, deepfakes, AI-driven scams, and the weaponisation of AI for misinformation. You’ll build an essential foundation in both traditional security frameworks and AI-specific risks, setting the stage for deeper exploration of securing AI applications throughout the rest of the course. Get ready to explore the frontline of AI security challenges, and understand the urgency of building trusted, robust, and defensible AI systems.

Das ist alles enthalten

1 Aufgabe8 Plug-ins

As AI becomes increasingly integrated into critical infrastructure and industrial systems, it brings with it new layers of complexity, and new avenues for attack. In this topic, you’ll explore how Artificial Intelligence is reshaping the security landscape of Industrial Control Systems (ICS) and Operational Technology (OT), and what this means for defenders working in high-risk, high-impact environments. We begin by examining how AI is applied in ICS and OT, enhancing operational efficiency, automation, and predictive maintenance. But with innovation comes risk: AI introduces novel vulnerabilities, from AI-driven manipulation of cyber-physical systems to emerging attack vectors in critical infrastructure such as energy grids and manufacturing lines. Through real-world case studies, you’ll investigate how adversaries exploit AI in industrial environments and how traditional OpSec and DevSecOps practices must be adapted to secure AI-enabled deployments. You'll also learn how to identify sensitive components within AI pipelines and apply context-specific defences based on sector, whether in military-grade applications, industrial settings, or consumer products. AI is powering the future of industry. Here, you’ll learn how to defend it.

Das ist alles enthalten

1 Aufgabe6 Plug-ins

As AI systems transition from experimental models to real-world deployment, their exposure to adversarial threats and misuse increases dramatically. In this topic, we’ll explore how AI is being attacked and exploited in practice, and why securing these systems is now a critical focus for cyber professionals. You’ll dive into the mechanics of AI-specific attack vectors such as model poisoning, information leakage, model stealing, and backdoor exploits. These threats not only compromise the performance of AI models, but also pose serious risks to data privacy, intellectual property, and user safety. We’ll also examine the implications of harmful AI outputs, whether they arise from poorly aligned models, biased training data, or deliberate manipulation. You’ll learn how challenges such as output alignment, ethical censorship, and AI-powered surveillance affect both public trust and legal compliance. By analysing real-world case studies and scenarios, this topic will sharpen your ability to identify vulnerabilities in AI systems and understand the broader societal consequences of insecure deployments. AI is already shaping the world, this topic helps ensure it does so securely and responsibly.

Das ist alles enthalten

1 Aufgabe6 Plug-ins

As AI systems become more powerful and integrated into critical operations, defending them against emerging threats is no longer optional—it’s mission-critical. In this topic, you’ll explore the technical controls and testing strategies used to secure AI models and protect them from compromise. You’ll learn how to apply AI-specific defences, from secure algorithm design to privacy-preserving techniques like differential privacy. You’ll also examine how to test and validate the robustness of AI models using red, purple, and blue teaming approaches. With a focus on balancing security, utility, and performance, this topic empowers you to make informed trade-offs in high-stakes environments. Whether you’re building or auditing AI systems, you’ll gain the practical skills needed to implement trusted controls and rigorously test for resilience against real-world threats.

Das ist alles enthalten

1 Aufgabe8 Plug-ins

As AI systems grow in influence and complexity, so too does the imperative to ensure they are designed, deployed, and governed responsibly. This topic introduces the foundational principles of Responsible AI—covering fairness, bias mitigation, transparency, and ethical accountability. You’ll explore how AI decisions can impact individuals and communities, and how to navigate trade-offs between user privacy, model performance, and transparency. Key challenges such as data sourcing, labelling, and the ethical implications of large-scale models will be unpacked, alongside practical strategies for enhancing trust in AI systems. We’ll also dive into global frameworks, policies, and governance models that support secure and ethical AI adoption, equipping you with the knowledge to ensure AI systems are not only functional—but fair, transparent, and aligned with regulatory expectations.

Das ist alles enthalten

1 Aufgabe6 Plug-ins

AI is evolving rapidly—and with it, the scope and complexity of its security challenges. In this final topic, we turn our attention to the road ahead: examining how emerging applications and architectures will shape the next frontier of AI security. You’ll explore speculative but increasingly plausible uses of AI in sectors like healthcare, autonomous vehicles, and programming—unpacking the unique risks each use case presents. We’ll also introduce Artificial General Intelligence (AGI), examining its transformative potential alongside the profound security and ethical implications it may carry. From lightweight AI models for constrained devices to philosophical perspectives on security trade-offs, this topic encourages you to think critically and proactively. The goal: to equip you with the insight and foresight needed to anticipate future risks, influence responsible innovation, and contribute to the safe evolution of intelligent systems.

Das ist alles enthalten

1 Lektüre1 Aufgabe7 Plug-ins

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Matt Bushby
Macquarie University
11 Kurse827 Lernende

von

Mehr von Computer Security and Networks entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen