The NVIDIA: Fundamentals of Deep Learning Course is the second course in the Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Associate specialization. It introduces learners to core deep learning concepts and techniques, building on foundational machine learning principles.



NVIDIA: Fundamentals of Deep Learning
This course is part of Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Specialization

Instructor: Whizlabs Instructor
Access provided by New York State Department of Labor
Recommended experience
Recommended experience
What you'll learn
Understand deep learning fundamentals, including neuron data processing and model training.
Implement multi-class classification and CNNs for image recognition tasks.
Apply transfer learning with pre-trained models to improve deep learning performance.
Skills you'll gain
Details to know

Add to your LinkedIn profile
4 assignments
February 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate


Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

There are 2 modules in this course
Welcome to Week 1 of the NVIDIA: Fundamentals of Deep Learning course. This week, we will cover the basics of Deep Learning. We will explore how data is processed in a neuron and learn about Gradient Descent. Next, we will demonstrate Training a Perceptron and dive into Forward Propagation and Backward Propagation in deep learning networks. Finally, we will look at Activation Functions with a practical demo. By the end of the week, you will have a strong understanding of these core concepts.
What's included
9 videos2 readings2 assignments1 discussion prompt
Welcome to Week 2 of NVIDIA: Fundamentals of Deep Learning course. This week, we will dive into Advanced Deep Learning Techniques, where we will learn about Multi-Class Classification using the MNIST Dataset and explore how deep learning models can be applied for classification tasks. We will cover training a multiclass classifier and methods to fit and evaluate the model's performance. Next, we will gain a deep understanding of Convolutional Neural Networks (CNNs), which are essential for image recognition tasks. We will also explore Transfer Learning Techniques, which allow us to leverage pre-trained models for new tasks. By the end of the week, we will implement Transfer Learning on an Image Dataset through a practical demo, reinforcing your understanding of these advanced techniques.
What's included
5 videos3 readings2 assignments
Instructor

Offered by
Why people choose Coursera for their career




Explore more from Computer Science

Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy