In this course, you will learn how to apply deep learning models to Natural Language Processing (NLP) tasks using Python. By the end of the course, you will be able to understand and implement cutting-edge deep learning models, including Feedforward Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks, tailored for NLP applications. You will also get hands-on experience with text classification, embeddings, and advanced models such as CBOW, GRU, and LSTM in TensorFlow.



Natural Language Processing - Deep Learning Models in Python

Dozent: Packt - Course Instructors
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Implement deep learning models for NLP using Python and TensorFlow.
Understand and apply feedforward, convolutional, and recurrent neural networks for text data.
Build and train models for text classification, NER, and POS tagging.
Learn advanced techniques such as CBOW and LSTM for improving NLP tasks.
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
April 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 6 Module
In this module, we will introduce you to the course and give a detailed outline of the journey ahead. We will also walk through the special offer exclusive to participants, ensuring you are set up for success in the course.
Das ist alles enthalten
2 Videos1 Lektüre
In this module, we will show you how to find and download the necessary resources to get started. We'll also share useful tips to help you navigate through the course with confidence and make the most of your learning experience.
Das ist alles enthalten
2 Videos1 Aufgabe
In this module, we will explore the fundamentals of the neuron, focusing on its mathematical foundations and role in deep learning. Key topics include text classification, fitting lines to data, and understanding how models learn during training.
Das ist alles enthalten
7 Videos1 Aufgabe
In this module, we will dive into feedforward artificial neural networks, focusing on their architecture, mechanisms like forward propagation, and the crucial role of activation functions. We will also demonstrate how to apply these concepts to text classification tasks.
Das ist alles enthalten
15 Videos1 Aufgabe
In this module, we will cover the theory and practical applications of convolutional neural networks, emphasizing their use in NLP. From understanding convolution to implementing CNNs for text processing in TensorFlow, this module prepares you for more advanced tasks.
Das ist alles enthalten
9 Videos1 Aufgabe
In this module, we will dive into recurrent neural networks (RNNs), exploring how they process sequential data and their application in NLP tasks. We will also introduce advanced models like GRU and LSTM, guiding you through real-world implementations in TensorFlow.
Das ist alles enthalten
12 Videos2 Aufgaben
Dozent

von
Mehr von Machine Learning entdecken
DeepLearning.AI
Edureka
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Weitere Fragen
Finanzielle Unterstützung verfügbar,